PARALLEL I/O ON MIRA

AND THETA -
CHALLENGES OF
PORTABLE I/O WITH
BEST PRACTICES

PAUL COFFMAN
ALCF Scientific Software
Performance Engineer

May 4, 2017
ALCF Argonne, IL

MIRA I/O

STORAGE VS COMPUTATION TREND

1/0 vs. FLOPS for #1 supercomputer in top500 list
1.E-03
AT
1.E-04 I
o
o
—
Ll
~
o
)
>
[}
1.E-05
1.E-06 T T T T | f t T f T f T t f }
1997 2001 2004 2008 2010 2011 2013 2015 2018
3

Argonne &

MIRA I/O INFRASTRUCTURE OVERVIEW

Storage resources

\

AAAAAAAAAAAAAAAAA

MIRA I/O INFRASTRUCTURE

BG/Q Optical QDR InfiniBand Serial ATA
2x 16 Gbit/sec 32 Gbit/sec 6.0 Gbit/sec

— |

| — | | —

Compute nodes Gateway nodes Commodity Storage nodes Enterprise storage
run applications and run parallel file system network primarily run parallel file system controllers and large racks
some I/O middleware. client software and carries storage traffic. software and manage of disks are connected via

forward 1/O operations incoming FS traffic InfiniBand.

from HPC clients. from gateway nodes.
768K cores with | Gbyte 384 |6-core PowerPC QDR Infiniband SFA | 2KE hosts VM 32 DataDirect SFA|2KE;
of RAM each A2 nodes with |6 Gbytes Federated Switch running GPFS servers 560 3 Tbyte drives + 32

of RAM each 200 GB SSD; 16

InfiniBand ports per pair

5 Argonne &

MIRA 1/O HARDWARE (ION)

BG/Q Optical
2x 16 Gbit/sec

ODR InfiniBand Serial ATA
32 Gbit/sec 6.0 Gbit/sec

I

—

Compute nodes Gateway nodes Storage nodes Enterprise storage
run applications and run parallel file system network primarily run parallel file system controllers and large racks
some I/O middleware. client software and carries storage traffic. software and manage of disks are connected via

forward 1/O operations incoming FS traffic InfiniBand.

from HPC clients. from gateway nodes.
768K cores with | Gbyte 384 |6-core PowerPC QDR Infiniband SFA | 2KE hosts VM 32 DataDirect SFA| 2KE;
of RAM each A2 nodes with |6 Gbytes Federated Switch running GPFS servers 560 3 Tbyte drives + 32

of RAM each 200 GB SSD; 16

InfiniBand ports per pair

6 Argonne &

MIRA 1/O HARDWARE (ION)

= More or less the same hardware as a compute node

= PowerPC A2 with 16 cores running at 1600 MHz

» 16 GB of DDR3

» (2) 2 GB/s bi-directional optical links which connect to BG/Q Torus

= (1) 4 GB/s bi-directional Infiniband QDR link which connects to SAN
» Runs the I/O forwarding daemon

» Runs the GPFS parallel file system client

» Dedicated resource when running on at least 512 nodes

» One ION for every 128 compute nodes
— 49152 Compute nodes -> 384 1/O nodes

g

g U

g8c8 . & SN
JOdU J

OO J

Jud U

- J

Argonne &

MIRA SAN (STORAGE AREA NETWORK)

BG/Q Optical QDR InfiniBand Serial ATA
2x 16 Gbit/sec 32 Gbijt/sec 6.0 Gbit/sec

—

Compute nodes Gateway nodes Commodity Storage nodes Enterprise storage
run applications and run parallel file system network primarily run parallel file system controllers and large racks
some I/O middleware. client software and carries storage traffic. software and manage of disks are connected via

forward 1/O operations incoming FS traffic InfiniBand.

from HPC clients. from gateway nodes.
768K cores with | Gbyte 384 |6-core PowerPC QDR Infiniband SFA | 2KE hosts VM 32 DataDirect SFA|2KE;
of RAM each A2 nodes with |6 Gbytes Federated Switch running GPFS servers 560 3 Tbyte drives + 32

of RAM each 200 GB SSD; 16

InfiniBand ports per pair

8 Argonne &

MIRA SAN (STORAGE AREA NETWORK)

= SAN connects Mira, Cetus, and Cooley all to Mira file systems
= Shared resource

= (4) Mellanox 1S5600 Infiniband QDR switches
— 3,024 ports

Mellanox Fabric

9 Argonne &

MIRA SAN (STORAGE AREA NETWORK)

BG/Q Optical QDR InfiniBand Serial ATA
2x 16 Gbit/sec 32 Gbit/sec 6.0 Gbit/sec

Compute nodes Gateway nodes Commodity StorageTiodes Enterprise storage
run applications and run parallel file system network primarily run parallel file system controllers and large racks
some I/O middleware. client software and carries storage traffic. software and manage of disks are connected via

forward 1/O operations incoming FS traffic InfiniBand.

from HPC clients. from gateway nodes.
768K cores with | Gbyte 384 |6-core PowerPC QDR Infiniband SFA | 2KE hosts VM 32 DataDirect SFA|2KE;
of RAM each A2 nodes with |6 Gbytes Federated Switch running GPFS servers 560 3 Tbyte drives + 32

of RAM each 200 GB SSD; 16

InfiniBand ports per pair

10 Argonne &

MIRA I/O HARDWARE (STORAGE SYSTEMS)

» mira-fs0 - project file system
— (16) DDN SFA12Ke systems
+ 8,960 SATA disks
« 512 SSDs
— 19 PB of formatted storage
— ~240 GB/s (read or write)

= mira-fs1 — project file system
— (6) DDN SFA12Ke systems
+ 3,360 SATA disks
« 12 SSDs
— 7 PB of formatted storage
— ~90 GB/s

= mira-home — home file system
— (3) DDN SFA12Ke systems (5 drawer)
- 1 PB of formatted storage

1 Argonne &

MIRA 1/O FORWARDING

» Storage system as a whole is optimized for scale (# processors) and
throughput (# of GB)
— Implies that small operations or individual latencies may be worse

» The Blue Gene /Q uses a technique call I/O forwarding

» Certain system calls issued on the compute node are sent to the I/0O node for
processing (mainly calls related to 1/0O)

» The system calls are replayed on the 1/0O node and the results returned to the
compute node

» This architecture is used in order to simplify interactions with the parallel file
system
— 49152 compute nodes -> 384 1/O nodes

Notes

= Can make typically low-overhead system calls costly
— Transmitting system call over network to be processed at ION
— Example: Iseek
— Minimize these type of calls which perform a small amount of work per call

12 Argonne &

MIRA - GPFS

» |IBM’s GPFS is used for all parallel file systems on Mira
» Fully supports POSIX semantics

» Client-side and server-side caching

» Metadata is replicated on all file systems

= Quotas are enabled
— myquota (home)
— myprojectquotas (project)
— You will get an error if you overrun your quota (-EQUOTA)

Blocksize Capacity Speed

mira-fsO project 8 MB 19 PB 240 GB/s
mira-fs1 project 8 MB 7 PB 90 GB/s
mira- home 256 K 1PB -
home

13 Argonne &

MYPROJECTQUOTAS

Charms@miralacl benchmarks]$ myprojectquotas
mira-fs@ : Current Project Quota information for projects you're a member of:

Name Type Filesystem GB_Used GB_Quota Grace
Acceptance Project mira-fs@ 7491.93 7400.00 7 days
IBMGSSTest Project mira-fs@ 0.00 0.01 none
Maintenance Project mira-fs@ 14074.71 102400.00 none
Performance Project mira-fs@ 88247 .11 102400.00 none
Stability_Harness Project mira-fs@ 1842.53 1842.53 none
mira-fsl : Current Project Quota information for projects you're a member of:

Name Type Filesystem GB_Used GB_Quota Grace
ALCF_Getting_Started Project mira-fsl 0.00 1024.00 none
CONVERGE-BGQ-LDRD Project mira-fsl 947.45 0.01 expired
IBM-performance Project mira-fsl 154.19 1024 .00 none
Maintenance Project mira-fsl 81.38 5120.00 none
OpenFOAM-ALCF Project mira-fsl 604 .85 1024.00 none
VERIFI_Workshop Project mira-fsl 1495.54 0.01 expired

14

Argonne &

LIBRARIES

» ALCF offers several compiled I/O libraries
— HDF5
— NetCDF
— pNetCDF
— Adios
— Look under /soft/libraries/

» These libraries offer capabilities to make managing large parallel I/O easier

= HDF5 Example
— provides ability to access data as arrays
— Access data by variable names

15 Argonne &

MPI-1I0

» Mira has great support for MPI-IO
— Leveraged by major I/O libraries like HDF5 or pNetCDF

= Aggregates |/O requests in to larger request sizes
— Collective aggregation becomes bottleneck larger blocks / smaller data

» Handles alignment on block boundaries
= | everages Mira 5D Torus network

» Essential environment variable for better performance
— --env BGLOCKLESSMPIO_F TYPE=0x47504653
« statfs ftype GPFS_SUPER_MAGIC
— Disables extra locking within Blue Gene ADIO layer — trusts GPFS to
manage it
» fcnt lock around the posix write

Notes

= MPI-10 scales up well but at full machine scales it is possible to run into issues
with running out of memory
— This is mainly related to memory usage needed for various MPI_Alltoall(v)
calls and discontiguous data types
— Workarounds exist if you run into these issues Argonne &

MPI-IO BGQ DRIVER TUNING

= e.g. soft add +mpiwrapper-xl.legacy

= Advanced Options

— Environment variable BGMPIO NAGG PSET=16 (default 8)

— Hint cb_buffer_size=16m

— Hint romio_no_indep_rw

» Possibly improve collective |O file open/close performance
— Only does file open on aggregator ranks during MPI_File_open, for

independent 10 (eg MPI_File_write_at) non-aggregator nodes file open at write
time (deferred)

= BGQ driver variables for workarounds for memory issues

— Generally will result in worse performance

— --envs BGMPIO_COMM=1
* no MPI_Alltoall(v) calls — buffers can be enormous for large blocks /

disconguous data

— --envs PAMID_SHORT=0

— --envs PAMID DISABLE _INTERNAL_EAGER TASK LIMIT=1
 avoid heap fragmentation

17 Argonne &

MPI-IO IN MPICH 3.3

= Full MPI-3 functionality on BGQ
— MPICH-CH4-OFI build currently available at ALCF on individual basis
« BGQ OFI Libfabric Provider officially in OF1 1.5 release (June 2017)
— https://ofiwg.github.io/libfabric/
— https://github.com/ofiwg/libfabric/tree/master/prov/bgq
* MPICH 3.3 Generally available sometime this summer 2017
— Lightweight MPI
* Low latency, eg 1-byte MPIl_Send ~1.2 usec
— Has new enhancements that improve collective |/O performance and
memory footprint on BGQ
» One-sided collective aggregation algorithm
— MPI_Alltoall(v) calls replaced with RMA (MPIl_Put and MPI_Get) to agg only

— MICH 3.3 massive latency improvements for small message MPI_Put and
MPI_Get over driver

— Largest benefits

« MPI-10 small data per rank, large number of ranks

« Small message point-to-point communication bottleneck
— Not an IBM supported version

* No optimized hardware accelerated collectives

— Software optimized collectives being added

» Reduced pt2pt bandwidth for large messages under —-mode c8

— Contact Paul Coffman (pcoffman@anl.gov) for more information

Argonne &

FILES

= Creating and opening files has overhead (metadata operations)

» Using thousands of files for a dataset is probably ok, using tens of thousands
may become problematic

= Suggestion is to use one to hundreds of files

» Creating files in a single directory in parallel becomes problematic because of
locking of the directory

Notes

= |f you insist on file-per-process
— Pre-create the files before the job runs

— or Use a unique (pre-created) directory per file
— or Create all the files on 1 rank first, then reopen the files on the other ranks

19 Argonne &

FILES - EXAMPLES

[harms@miralac1 test]$ time python create.py
real 1m10.544s

user 0m1.129s

sys 0m7.092s

[harms@miralac1 test]$ Is file.* | wc -l

131072

From IOR

access = file-per-process
pattern = segmented (1 segment)
ordering = sequential offsets
clients = 49152 (1 per node)
repetitions =1
xfersize = 8 MiB
blocksize = 2 GiB

aggregate filesize = 98304 GiB

Commencing write performance test.
Wed Sep 18 01:38:07 2013

access bw(MiB/s) block(KiB) xfer(KiB) open(s)

write 138040 2097152 8192 308.73

20

wr/rd(s)

close(s)

0.026884

iter

0

Argonne &

FILES — CODE EXAMPLE

// Create and Preallocate the File(s) On Master
if (@ == m_rank)

{
retval = MPI_File_open(MPI_COMM_SELF, (char *)m_partFileName[1i],
MPI_MODE_WRONLY | MPI_MODE_CREATE,
MPI_INFO_NULL,&m_fileHandle[1]);
assert(retval == MPI_SUCCESS);
// Preallocate File
MPI_File_set_size(m_fileHandle[1], m_partFileSize);
MPI_File_close (&m_fileHandle[1i]);
}

MPI_Barrier (MPI_COMM_WORLD);

// Open the File for Writing
retval = MPI_File_open(MPI_COMM_WORLD, (char *)m_partFileName,
MPI_MODE_WRONLY, MPI_INFO_NULL, &m_fileHandle);

assert(retval == MPI_SUCCESS);

Create file on single rank and

open on the other ranks
21 Argonne &

ALIGNMENT

= A critical element for success is performing block aligned 1/0O when using
shared files

» The GPFS project file systems are all 8 MB
= Unaligned access will be punished due to GPFS locking

Example
— MPI rank A and B happen to use two different I/O nodes

— Rank A writes the first MB of an 8 MB block
« The GPFS client for rank A must acquire the lock for this fs block
— Rank B writes the last MB of an 8 MB block
» The GPFS client for rank B tries to acquire the block for this block but
must wait because it is in use
— Parallel I/0 becomes serial for this workload

@ﬂj

22 Argonne &

REQUEST SIZE

= Another factor for good performance is your I/O request size

» Larger request sizes amortize the cost of operations and allow efficient
transfers by the system software

= Multiples of the files system block size will work best!
— 8,16, 32 MB

» STREAM |/O (fopen, fread, fwrite, fclose) does buffering at the compute node
level, so it will tolerate smaller requests sizes because internally it does larger

requests 128K (by default)

23 Argonne &

REQUEST SIZE / ALIGNMENT - EXAMPLES

IOR shared file performance vs request size:
8192 MPI processes, c4 mode (2 racks)

5000

Wrte —t—

4500 F
4000 F
3500 F
3000 F

2500 F
2000 F
1500 F

Aggregate BW (MB/sec)

1000 F

500 F

128 256 512 1024 2048 4096 8192 16384

Request Blocksize (kilobytes)
24

Argonne &

TUNING

= When to tune?
— If your 1/O is less than or equal to 5% of your runtime then you are well off
— If your 1/O is 15-30%, you probably want to look at what's going on
— If your I/O is over 30%, you need to make changes

= What to tune?
— How “parallel” is your I/O? rank 0 only does 1/O?
— Look at file count
— Look at request size

= Check scaling
— 1/O easily breaks at scale, you definitely want to check your solution works
for your intended run size
» Even if you ran successfully at another site, you should still check your
relative performance here

25 Argonne &

PERFORMANCE TOOLS

= Darshan
— https://www.alcf.anl.gov/user-guides/darshan
— An open-source tool developed for statistical profiling of 1/0
— Designed to be lightweight and low overhead
 Finite memory allocation for statistics (about 2MB) done during MPI_Init
» Overhead of 1-2% total to record I/O calls
« Variation of 1/O is typically around 4-5%
» Darshan does not create detailed function call traces
— No source modifications
» Uses PMPI interfaces to intercept MPI calls
» Use Id wrapping to intercept POSIX calls
» Can use dynamic linking with LD _PRELOAD instead
— Stores results in single compressed log file

= TAU
— https://www.alcf.anl.gov/user-quides/tuning-and-analysis-utilities-tau
— “—optTracklO” in TAU_OPTIONS

» mpitrace
— http://www.alcf.anl.gov/user-quides/hpctw
— List performance of MPI_File* calls
« Show performance of underlying MPI-10 for 10 libraries such as HDF5

26 Argonne &

AAAAAAAAAAAAAAAAAA

DARSHAN CONTINUED

» Logs can be found in
— Igpfs/mira-fsO/logs/darshan/mira/<year>/<month>/<day>
— Igpfs/vesta-fsO/logs/darshan/vesta/<year>/<month>/<day>

» Known issue where no logs produced when using mpixIf90 linker
— Usually can be worked around by using mpixIf77 for linking

» darshan-job-summary.pl command for charts, table summaries
» darshan-parser for detailed text file

27

Argonne &

DARSHAN-JOB-SUMMARY.PL EXAMPLE

1/0 Operation Counts

Percentage of run time

Count (Total, All Procs)

Average I/O cost per process

100

60

20

Read o

Write m===m

Metadata —

Other (including application compute)

1/0 Sizes
3e+07

2.5e+07
2e+07
1.5e+07
1e+07

5e+06

Read mmmmm Write mmmmm

4.5e+07

4e+07

3.5e+07

3e+07

2.5e+07

2e+07

1.5e+07

Ops (Total, All Processes)

1e+07

5e+06

0
Read Write Open Stat Seek Mmap Fsync

POSIX MPI-1O Coll. m——
MPI-IO Indep. ===

1/0 Pattern
4e+07

3.5e+07
3e+07
2.5e+07
2e+07

1.5e+07

Ops (Total, All Procs)

1e+07

5e+06

0
Read Write

Total mmmmm Consecutive
Sequential

Most Common Access Sizes

access size |

count

65536
800
304
400

23066526
2378602
2172322
2029354

28

Argonne &

NATIONAL LABORATORY

BEST PRACTICES

= Consider using a high-level I/O library
» Use a “small” number of files from 1 to hundreds
= Consider using MPI-10 and collective calls if not a high-level library

» Perform block aligned I/O
— [projects file systems are 8 MB blocks

» —-env BGLOCKLESSMPIO_F_TYPE=0x47504653

= /O request sizes should be “large” where large is 8 MB
— Helps to achieve the above and uses GPFS efficiently

29 Argonne &

PORTABILITY

= Functional
— Easy! (now) POSIX, MPI-IO, HDF5, pNetCDF, Adios, etc.

— Almost any I/O interface was designed to be functionally portable across
systems

— Most HPC systems will have several method available

» Performance
— Currently much more difficult
— Caused in part by the fact each I/O subsystem is tuned for specific
workloads and different sites may chose to tune for different things
— POSIX is usually the wrong answer — easy to go wrong
— MPI-10 was designed to have pluggable ADIO layers which take into
account tuning for site specific things like
» underlying parallel file system
* interconnect topology
— One suggestion — try using a high-level library like HDF5, most are built on
MPI-IO primitives
« HDF5 has tuning options that can easily be modified at runtime without
changing structure or design of code

30 Argonne &

THETAI/O

ARCHITECTURE OF THETA

_ Router Router
30 Routers, 60 IB FDR links

~oss || oss [------- 0SS mps || mps || mos || mps

MGS 4 MDS IB FDR links

56 OSS IB FDR links

* 10 Forwarding from compute node to LNET Service
Node / Router
* Lnet Aries NIC on compute side, 2 IB links on
Object Storage Server (OSS) side
« (OSS handles communication from LNet Router to
Object Storage Target (OST) which is the physical

storage device 32 Argonne &

THETA I/O HARDWARE (STORAGE SYSTEM)

» theta-fs0 - project file system

— /lus/theta-fsO/projects

— Sonexion Storage
* 4 cabinets
* 10 PB usable space
 Total Lustre Performance 210 GB/s

— OSS Peak Performance 6 GB/s
— No quotas, no backups yet

33 Argonne &

STRIPING - KEY TO PERFORMANCE

= Striping pattern = count and size
— Stripe count is number of OSTs (storage device) used to store/access the file
— Size is the width of each contiguous access on the OST

Example:
Stripe size = 1mb, total file size being written 8mb

8 MB file

Stripe count =4
OSTO OST1 OST2 OST3 OSTO0O OST1 OST2 OST3

Stripe count = 8
OSTO OST1 OST2 OST3 0OST4 O0OST5 OST6 OST7

34 Argonne &

STRIPING BASICS

. Manage from command line on file or directory scope — basic parms:
. Ifs getstripe <file/dir name>
. Ifs setstripe --stripe-size <size> --count <count> <file/dir name>
Manage from code
o ioctl system call passing LL _I0C_LOV_GETSTRIPE /

LL IOC_LOV_SETSTRIPE with structure for count and size
Files and directories inherit striping patterns from the parent directory
File cannot exist before setting striping pattern

« Properties set in MDS on file creation
Stripe count cannot exceed number of OSTs

. Ifs osts

« Can select specific OSTs

35 Argonne &

AAAAAAAAAAAAAAAAAA

OPTIMIZE 1/0 PERFORMANCE

Default parameters

o Lustre
« Stripe count (#OST) : 1
« Stripe size (LNET node buffer size) : 1 MB

« Cray MPI - Collective I/O

. #Aggregators per OST : 1
> aprun -e MPICH_MPIIO_HINTS=*:cray _cb_nodes _multiplier=<#aggr> [...]

. Aggregator buffer size : 16 MB

. Locking mode : independent

> aprun -e
MPICH_MPIIO_HINTS=*:cray_cb_write_lock_mode=<0,1>:romio_no_indep rw=true

36 Argonne &

OPTIMIZE 1/0 PERFORMANCE

Stripe count / Stripe size
« IOR benchmark

« 256 nodes 25 :
« 1 MB read/written per rank R —
. 4 GB file size ol B o
Parameters o
. 16 ranks/node c br ” §
« Aggr/OST: 1 E
. _Lock: Independent o | a4 4
5 F -
Best Performance:
Count = 32+ 0
Size=8mb 1816 1816 1 816 1 816 1 8 16

1 0ST 8 OST 32 OST 48 OST 56 OST
Stripe Count (#0ST) and Stripe Size (in MB)

37 Argonne &

OPTIMIZE 1/0 PERFORMANCE

Lock Contention Parameters

Stripe count: 48
Stripe size: 1 MB

|IOR benchmark

256 nodes

1 MB read/written per rank

Locking modes (cray _cb_write _lock_mode)

16 ranks/node
Aggr/OST: 1
Aggr. buff. Size: 16 MB

Shared: 1 (shared lock for all mpi ranks aggregators)

Independent: 0 (extent lock for each mpi rank)

PPN 2 16 64
Lock mode 0 1 0 1 0 1
Write (GBps) 4.15 3.38 7.90 10.37 7.85 10.08
Read (GBps) 13.08 | 17.46 | 21.50 | 53.56 | 25.34 | 67.14

« Shared locking limitations
« Collective MPI-IO only allowed
* romio_no_indep_rw=true allows no independent IO
 Won't work with HDF5 and PnetCDF

38 Argonne &

CONCLUSION

THERE IS NO ONE-SIZE FITS ALL I/O SOLUTION
(UNFORTUNATE)

HOWEVER

— /O is usually a tractable problem and doesn’t require extensive resources to fix

— Solutions can also be built that are flexible enough to be modified for different
sites

— High level I/O libraries are a good example

ALCF STAFF IS AVAILABLE TO HELP!

www.anl.gov

